Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            With the commercialization of virtual/augmented reality (VR/AR) devices, there is an increasing interest in combining immersive and non-immersive devices (e.g., desktop computers) for asymmetric collaborations. While such asymmetric settings have been examined in social platforms, significant questions around layout dimensionality in data-driven decision-making remain underexplored. A crucial inquiry arises: although presenting a consistent 3D virtual world on both immersive and non-immersive platforms has been a common practice in social applications, does the same guideline apply to lay out data? Or should data placement be optimized locally according to each device's display capacity? This study aims to provide empirical insights into the user experience of asymmetric collaboration in data-driven decision-making. We tested practical dimensionality combinations between PC and VR, resulting in three conditions: PC2D+VR2D, PC2D+VR3D, and PC3D+VR3D. The results revealed a preference for PC2D+VR3D, and PC2D+VR2D led to the quickest task completion. Our investigation facilitates an in-depth discussion of the trade-offs associated with different layout dimensionalities in asymmetric collaborations.more » « less
- 
            The computational notebook serves as a versatile tool for data analysis. However, its conventional user interface falls short of keeping pace with the ever-growing data-related tasks, signaling the need for novel approaches. With the rapid development of interaction techniques and computing environments, there is a growing interest in integrating emerging technologies in data-driven workflows. Virtual reality, in particular, has demonstrated its potential in interactive data visualizations. In this work, we aimed to experiment with adapting computational notebooks into VR and verify the potential benefits VR can bring. We focus on the navigation and comparison aspects as they are primitive components in analysts' workflow. To further improve comparison, we have designed and implemented a Branching&Merging functionality. We tested computational notebooks on the desktop and in VR, both with and without the added Branching&Merging capability. We found VR significantly facilitated navigation compared to desktop, and the ability to create branches enhanced comparison.more » « less
- 
            The explosive growth in supercomputers capacity has changed simulation paradigms. Simulations have shifted from a few lengthy ones to an ensemble of multiple simulations with varying initial conditions or input parameters. Thus, an ensemble consists of large volumes of multi-dimensional data that could go beyond the exascale boundaries. However, the disparity in growth rates between storage capabilities and computing resources results in I/O bottlenecks. This makes it impractical to utilize conventional postprocessing and visualization tools for analyzing such massive simulation ensembles. In situ visualization approaches alleviate I/O constraints by saving predetermined visualizations in image databases during simulation. Nevertheless, the unavailability of output raw data restricts the flexibility of post hoc exploration of in situ approaches. Much research has been conducted to mitigate this limitation, but it falls short when it comes to simultaneously exploring and analyzing parameter and ensemble spaces. In this paper, we propose an expert-in-the-loop visual exploration analytic approach. The proposed approach leverages: feature extraction, deep learning, and human expert–AI collaboration techniques to explore and analyze image-based ensembles. Our approach utilizes local features and deep learning techniques to learn the image features of ensemble members. The extracted features are then combined with simulation input parameters and fed to the visualization pipeline for in-depth exploration and analysis using human expert + AI interaction techniques. We show the effectiveness of our approach using several scientific simulation ensembles.more » « less
- 
            Narratives are fundamental to our understanding of the world, providing us with a natural structure for knowledge representation over time. Computational narrative extraction is a subfield of artificial intelligence that makes heavy use of information retrieval and natural language processing techniques. Despite the importance of computational narrative extraction, relatively little scholarly work exists on synthesizing previous research and strategizing future research in the area. In particular, this article focuses on extracting news narratives from an event-centric perspective. Extracting narratives from news data has multiple applications in understanding the evolving information landscape. This survey presents an extensive study of research in the area of event-based news narrative extraction. In particular, we screened more than 900 articles, which yielded 54 relevant articles. These articles are synthesized and organized by representation model, extraction criteria, and evaluation approaches. Based on the reviewed studies, we identify recent trends, open challenges, and potential research lines.more » « less
- 
            SAGE3, the newest and most advanced generation of the Smart Amplified Group Environment, is an open-source software designed to facilitate collaboration among scientists, researchers, students, and professionals across various fields. This tutorial aims to introduce attendees to the capabilities of SAGE3, demonstrating its ability to enhance collaboration and productivity in diverse settings, from co-located office collaboration to remote collaboration to both at once, with diverse displays, from personal laptops to large-scale display walls. Participants will learn how to effectively use SAGE3 for brainstorming, data analysis, and presentation purposes, as well as installation of private collaboration servers and development of custom applications.more » « less
- 
            Current computational notebooks, such as Jupyter, are a popular tool for data science and analysis. However, they use a 1D list structure for cells that introduces and exacerbates user issues, such as messiness, tedious navigation, inefficient use of large screen space, performance of non-linear analyses, and presentation of non-linear narratives. To ameliorate these issues, we designed a prototype extension for Jupyter Notebooks that enables 2D organization of computational notebook cells into multiple columns. In this paper, we present two evaluative studies to determine whether such “2D computational notebooks” provide advantages over the current computational notebook structure. From these studies, we found empirical evidence that our multi-olumn 2D computational notebooks provide enhanced efficiency and usability. We also gathered design feedback which may inform future works. Overall, the prototype was positively received, with some users expressing a clear preference for 2D computational notebooks even at this early stage of development.more » « less
- 
            Current computational notebooks, such as Jupyter, are a popular tool for data science and analysis. However, they use a 1D list structure for cells that introduces and exacerbates user issues, such as messiness, tedious navigation, inefficient use of large screen space, performance of non-linear analyses, and presentation of non-linear narratives. To ameliorate these issues, we designed a prototype extension for Jupyter Notebooks that enables 2D organization of computational notebook cells into multiple columns. In this paper, we present two evaluative studies to determine whether such “2D computational notebooks” provide advantages over the current computational notebook structure. From these studies, we found empirical evidence that our multi-olumn 2D computational notebooks provide enhanced efficiency and usability. We also gathered design feedback which may inform future works. Overall, the prototype was positively received, with some users expressing a clear preference for 2D computational notebooks even at this early stage of development.more » « less
- 
            Current computational notebooks, such as Jupyter, are a popular tool for data science and analysis. However, they use a 1D list structure for cells that introduces and exacerbates user issues, such as messiness, tedious navigation, inefficient use of large screen space, performance of non-linear analyses, and presentation of non-linear narratives. To ameliorate these issues, we designed a prototype extension for Jupyter Notebooks that enables 2D organization of computational notebook cells into multiple columns. In this paper, we present two evaluative studies to determine whether such “2D computational notebooks” provide advantages over the current computational notebook structure. From these studies, we found empirical evidence that our multi-olumn 2D computational notebooks provide enhanced efficiency and usability. We also gathered design feedback which may inform future works. Overall, the prototype was positively received, with some users expressing a clear preference for 2D computational notebooks even at this early stage of development.more » « less
- 
            Current computational notebooks, such as Jupyter, are a popular tool for data science and analysis. However, they use a 1D list structure for cells that introduces and exacerbates user issues, such as messiness, tedious navigation, inefficient use of large screen space, performance of non-linear analyses, and presentation of non-linear narratives. To ameliorate these issues, we designed a prototype extension for Jupyter Notebooks that enables 2D organization of computational notebook cells into multiple columns. In this paper, we present two evaluative studies to determine whether such “2D computational notebooks” provide advantages over the current computational notebook structure. From these studies, we found empirical evidence that our multi-olumn 2D computational notebooks provide enhanced efficiency and usability. We also gathered design feedback which may inform future works. Overall, the prototype was positively received, with some users expressing a clear preference for 2D computational notebooks even at this early stage of development.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available